Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Open ; 13(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38304969

RESUMO

Mutations in genes that affect mitochondrial function cause primary mitochondrial diseases. Mitochondrial diseases are highly heterogeneous and even patients with the same mitochondrial disease can exhibit broad phenotypic heterogeneity, which is poorly understood. Mutations in subunits of mitochondrial respiratory complex I cause complex I deficiency, which can result in severe neurological symptoms and death in infancy. However, some complex I deficiency patients present with much milder symptoms. The most common nuclear gene mutated in complex I deficiency is the highly conserved core subunit NDUFS1. To model the phenotypic heterogeneity in complex I deficiency, we used RNAi lines targeting the Drosophila NDUFS1 homolog ND-75 with different efficiencies. Strong knockdown of ND-75 in Drosophila neurons resulted in severe behavioural phenotypes, reduced lifespan, altered mitochondrial morphology, reduced endoplasmic reticulum (ER)-mitochondria contacts and activation of the unfolded protein response (UPR). By contrast, weak ND-75 knockdown caused much milder behavioural phenotypes and changes in mitochondrial morphology. Moreover, weak ND-75 did not alter ER-mitochondria contacts or activate the UPR. Weak and strong ND-75 knockdown resulted in overlapping but distinct transcriptional responses in the brain, with weak knockdown specifically affecting proteosome activity and immune response genes. Metabolism was also differentially affected by weak and strong ND-75 knockdown including gamma-aminobutyric acid (GABA) levels, which may contribute to neuronal dysfunction in ND-75 knockdown flies. Several metabolic processes were only affected by strong ND-75 knockdown including the pentose phosphate pathway and the metabolite 2-hydroxyglutarate (2-HG), suggesting 2-HG as a candidate biomarker of severe neurological mitochondrial disease. Thus, our Drosophila model provides the means to dissect the mechanisms underlying phenotypic heterogeneity in mitochondrial disease.


Assuntos
Drosophila , Complexo I de Transporte de Elétrons/deficiência , Doenças Mitocondriais , Animais , Humanos , Drosophila/genética , Drosophila/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Fenótipo
2.
PLoS Genet ; 19(7): e1010793, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37399212

RESUMO

Mutations in subunits of the mitochondrial NADH dehydrogenase cause mitochondrial complex I deficiency, a group of severe neurological diseases that can result in death in infancy. The pathogenesis of complex I deficiency remain poorly understood, and as a result there are currently no available treatments. To better understand the underlying mechanisms, we modelled complex I deficiency in Drosophila using knockdown of the mitochondrial complex I subunit ND-75 (NDUFS1) specifically in neurons. Neuronal complex I deficiency causes locomotor defects, seizures and reduced lifespan. At the cellular level, complex I deficiency does not affect ATP levels but leads to mitochondrial morphology defects, reduced endoplasmic reticulum-mitochondria contacts and activation of the endoplasmic reticulum unfolded protein response (UPR) in neurons. Multi-omic analysis shows that complex I deficiency dramatically perturbs mitochondrial metabolism in the brain. We find that expression of the yeast non-proton translocating NADH dehydrogenase NDI1, which reinstates mitochondrial NADH oxidation but not ATP production, restores levels of several key metabolites in the brain in complex I deficiency. Remarkably, NDI1 expression also reinstates endoplasmic reticulum-mitochondria contacts, prevents UPR activation and rescues the behavioural and lifespan phenotypes caused by complex I deficiency. Together, these data show that metabolic disruption due to loss of neuronal NADH dehydrogenase activity cause UPR activation and drive pathogenesis in complex I deficiency.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animais , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , NADH Desidrogenase/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Neurônios/metabolismo , Drosophila/metabolismo , Resposta a Proteínas não Dobradas/genética
3.
Behav Res Methods ; 53(2): 536-557, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32748238

RESUMO

Numerous neurodegenerative and psychiatric disorders are associated with deficits in executive functions such as working memory and cognitive flexibility. Progress in developing effective treatments for disorders may benefit from targeting these cognitive impairments, the success of which is predicated on the development of animal models with validated behavioural assays. Zebrafish offer a promising model for studying complex brain disorders, but tasks assessing executive function are lacking. The Free-movement pattern (FMP) Y-maze combines aspects of the common Y-maze assay, which exploits the inherent motivation of an organism to explore an unknown environment, with analysis based on a series of sequential two-choice discriminations. We validate the task as a measure of working memory and executive function by comparing task performance parameters in adult zebrafish treated with a range of glutamatergic, cholinergic and dopaminergic drugs known to impair working memory and cognitive flexibility. We demonstrate the cross-species validity of the task by assessing performance parameters in adapted versions of the task for mice and Drosophila, and finally a virtual version in humans, and identify remarkable commonalities between vertebrate species' navigation of the maze. Together, our results demonstrate that the FMP Y-maze is a sensitive assay for assessing working memory and cognitive flexibility across species from invertebrates to humans, providing a simple and widely applicable behavioural assay with exceptional translational relevance.


Assuntos
Função Executiva , Memória de Curto Prazo , Animais , Encéfalo , Aprendizagem em Labirinto , Camundongos , Motivação , Peixe-Zebra
4.
Addict Biol ; 25(2): e12725, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30761704

RESUMO

When exposed to ethanol, Drosophila melanogaster display a variety of addiction-like behaviours similar to those observed in mammals. Sensitivity to ethanol can be quantified by measuring the time at which 50% of the flies are sedated by ethanol exposure (ST50); an increase of ST50 following multiple ethanol exposures is widely interpreted as development of tolerance to ethanol. Sensitivity and tolerance to ethanol were measured after administration of the gamma-aminobutyric acid receptor B (GABAB ) agonist (SKF 97541) and antagonist (CGP 54626), when compared with flies treated with ethanol alone. Dose-dependent increases and decreases in sensitivity to ethanol were observed for both the agonist and antagonist respectively. Tolerance was recorded in the presence of GABAB drugs, but the rate of tolerance development was increased by SKF 97451 and unaltered in presence of CGP 54626. This indicates that the GABAB receptor contributes to both the sensitivity to ethanol and mechanisms by which tolerance develops. The data also reinforce the usefulness of Drosophila as a model for identifying the molecular components of addictive behaviours and for testing drugs that could potentially be used for the treatment of alcohol use disorder (AUD).


Assuntos
Alcoolismo/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Etanol/farmacologia , Antagonistas de Receptores de GABA-B/administração & dosagem , Receptores de GABA-B/fisiologia , Animais , Depressores do Sistema Nervoso Central/farmacologia , Modelos Animais de Doenças , Drosophila melanogaster , Masculino , Receptores de GABA-B/efeitos dos fármacos
5.
Brain Neurosci Adv ; 3: 2398212819883081, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32166184

RESUMO

Ethanol is a psychoactive substance causing both short- and long-term behavioural changes in humans and animal models. We have used the fruit fly Drosophila melanogaster to investigate the effect of ethanol exposure on the expression of the Gαq protein subunit. Repetitive exposure to ethanol causes a reduction in sensitivity (tolerance) to ethanol, which we have measured as the time for 50% of a set of flies to become sedated after exposure to ethanol (ST50). We demonstrate that the same treatment that induces an increase in ST50 over consecutive days (tolerance) also causes a decrease in Gαq protein subunit expression at both the messenger RNA and protein level. To identify whether there may be a causal relationship between these two outcomes, we have developed strains of flies in which Gαq messenger RNA expression is suppressed in a time- and tissue-specific manner. In these flies, the sensitivity to ethanol and the development of tolerance are altered. This work further supports the value of Drosophila as a model to dissect the molecular mechanisms of the behavioural response to alcohol and identifies G proteins as potentially important regulatory targets for alcohol use disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...